Studying Age-dependent Genomic Instability using the S. cerevisiae Chronological Lifespan Model
نویسندگان
چکیده
Studies using the Saccharomyces cerevisiae aging model have uncovered life span regulatory pathways that are partially conserved in higher eukaryotes. The simplicity and power of the yeast aging model can also be explored to study DNA damage and genome maintenance as well as their contributions to diseases during aging. Here, we describe a system to study age-dependent DNA mutations, including base substitutions, frame-shift mutations, gross chromosomal rearrangements, and homologous/homeologous recombination, as well as nuclear DNA repair activity by combining the yeast chronological life span with simple DNA damage and mutation assays. The methods described here should facilitate the identification of genes/pathways that regulate genomic instability and the mechanisms that underlie age-dependent DNA mutations and cancer in mammals.
منابع مشابه
DNA Replication Stress Is a Determinant of Chronological Lifespan in Budding Yeast
The chronological lifespan of eukaryotic organisms is extended by the mutational inactivation of conserved growth-signaling pathways that regulate progression into and through the cell cycle. Here we show that in the budding yeast S. cerevisiae, these and other lifespan-extending conditions, including caloric restriction and osmotic stress, increase the efficiency with which nutrient-depleted c...
متن کاملHydrogen peroxide induced loss of heterozygosity correlates with replicative lifespan and mitotic asymmetry in Saccharomyces cerevisiae
Cellular aging in Saccharomyces cerevisiae can lead to genomic instability and impaired mitotic asymmetry. To investigate the role of oxidative stress in cellular aging, we examined the effect of exogenous hydrogen peroxide on genomic instability and mitotic asymmetry in a collection of yeast strains with diverse backgrounds. We treated yeast cells with hydrogen peroxide and monitored the chang...
متن کاملGenomic Instability Is Associated with Natural Life Span Variation in Saccharomyces cerevisiae
Increasing genomic instability is associated with aging in eukaryotes, but the connection between genomic instability and natural variation in life span is unknown. We have quantified chronological life span and loss-of-heterozygosity (LOH) in 11 natural isolates of Saccharomyces cerevisiae. We show that genomic instability increases and mitotic asymmetry breaks down during chronological aging....
متن کاملTethering telomerase to telomeres increases genome instability and promotes chronological aging in yeast
Chronological aging of the yeast Saccharomyces cerevisiae is attributed to multi-faceted traits especially those involving genome instability, and has been considered to be an aging model for post-mitotic cells in higher organisms. Telomeres are the physical ends of eukaryotic chromosomes, and are essential for genome integrity and stability. It remains elusive whether dysregulated telomerase a...
متن کاملCellular Senescence in Yeast Is Regulated by rDNA Noncoding Transcription
Genomic instability is a conserved factor in lifespan reduction, although the molecular mechanism is not known. Studies in the yeast Saccharomyces cerevisiae over the past 20 years have found a connection between the ribosomal RNA gene cluster (rDNA) and lifespan. The highly repetitive rDNA exhibits genomic instability, and the antiaging histone deacetylase gene SIR2 regulates this instability....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 299 شماره
صفحات -
تاریخ انتشار 2011